Abstract

Feature extraction is one of the most important steps in any brain-computer interface (BCI) system. In particular, spatio-spectral feature extraction for motor-imagery BCIs (MI-BCI) has been the focus of several works in the past decade. This paper proposes a novel method, called separable common spatio-spectral patterns (SCSSP), for extraction of discriminant spatio-spectral EEG features in MI-BCIs. Assuming a binary classification problem, SCSSP uses a heteroscedastic matrix-variate Gaussian model for the multiband EEG rhythms, and seeks the spatio-spectral features whose variance is maximized for one brain task and minimized for the other task. Therefore, SCSSP can be considered as a spatio-spectral generalization of the conventional common spatial patterns (CSP) algorithm. The experimental results on two-class and multiclass motor-imagery data from publicly available BCI Competition datasets demonstrate that the proposed computationally efficient method competes closely with filter-bank CSP (FBCSP), and can even outperform the FBCSP if enough training data are available. Furthermore, SCSSP provides us with a simple measure for ranking the discriminant power of extracted spatio-spectral features, which is not possible in FBCSP. The matrix-variate Gaussian assumption allows the SCSSP method to jointly process the EEG data in both spatial and spectral domains. As a result, compared to the similar solutions in the literature such as FBCSP, the proposed SCSSP method requires significantly lower computations. The proposed computationally efficient spatio-spectral feature extractor is particularly suitable for applications in which the computational power is limited, such as emerging wearable mobile BCI systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.