Abstract

Given a pure state |ψN>∈ℋN of a quantum system composed of n qubits, where ℋN is the Hilbert space of dimension N=2n, this paper answers two questions: what conditions should the amplitudes in |ψN> satisfy for this state to be separable (i) into a tensor product of n qubit states |ψ2>0⊗ |ψ2>1 ⊗⋯⊗ |ψ2>n-1, and (ii), into a tensor product of two subsystems states |ψP> ⊗ |ψQ> with P=2p and Q=2q such that p+q=n? For both questions, necessary and sufficient conditions are proved, thus characterizing at the same time families of separable and entangled states of n qubit systems. A number of more refined questions about separability in n qubit systems can be studied on the basis of these results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.