Abstract
We consider constructing Lyapunov functions for systems that are both monotone and contractive with respect to a weighted one norm or infinity norm. This class of systems admits separable Lyapunov functions that are either the sum or the maximum of a collection of functions of a single argument. In either case, two classes of separable Lyapunov functions exist: the first class is separable along the system's state, and the second class is separable along components of the system's vector field. The latter case is advantageous for many practically motivated systems for which it is difficult to measure the system's state but easier to measure the system's velocity or rate of change. We additionally provide several examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.