Abstract
The purpose of this paper is to outline a simple theory of separability for a non-associative algebra A with semi-linear homomorphism σ. Taking A to be a finite dimensional abelian Lie p-algebra L and σ to be the pth power operation in L, this separability is the separability of [2]. Taking A to be an algebraic field extension K over k and σ to be the Frobenius (pth power) homomorphism in K, this separability is the usual separability of K over k. The theory also applies to any unital non-associative algebra A over a field k and any unital homomorphism σ from A to A such that σ(ke) ⊂ ke, e being the identity element of A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.