Abstract

Given the escalating intricacy of network environments and the rising level of sophistication in cyber threats, there is an urgent requirement for resilient and effective network intrusion detection systems (NIDS). This document presents an innovative NIDS approach that utilizes Convolutional Long Short-Term Memory (ConvLSTM) networks and Elephant Herd Optimization (EHO) to achieve precise and timely intrusion detection. Our proposed model combines the strengths of ConvLSTM, which can effectively capture spatiotemporal dependencies in network traffic data, and EHO, which allow the model to focus on relevant information while filtering out noise. To achieve this, we first preprocess network traffic data into sequential form and use ConvLSTM layers to learn both spatial and temporal features. Subsequently, we introduce Elephant Herd Optimization that dynamically assigns different weights to different parts of the input data, emphasizing the regions most likely to contain malicious activity. To evaluate the effectiveness of our approach, we conducted extensive experiments on publicly available network intrusion CICIDS2017 Dataset. The experimental results demonstrate the efficacy of the proposed approach (Accuracy = 99.98%), underscoring its potential to revolutionize modern network intrusion detection and proactively safeguard digital assets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.