Abstract
The LCZ framework has become a widely applied approach to study urban climate. The standard LCZ typology is highly specific when applied to western urban areas but generic in some African cities. We tested the generic nature of the standard typology by taking a two-part approach. First, we applied a single-source WUDAPT-based training input across three urban areas that represent a gradient in South African urbanization (Cape Town, Thohoyandou and East London). Second, we applied a local customized training that accounts for the unique characteristics of the specific area. The LCZ classification was completed using a random forest classifier on a subset of single (SI) and multitemporal (MT) Sentinel 2 imagery. The results show an increase in overall classification accuracy between 17 and 30% for the locally calibrated over the generic standard LCZ framework. The spring season is the best classified of the single-date imagery with the accuracies 7% higher than the least classified season. The multi-date classification accuracy is 13% higher than spring but only 9% higher when a neighborhood function (NF) is applied. For acceptable performance of the LCZ classifier in an African context, the training must be local and customized to the uniqueness of that specific area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.