Abstract
The existing sequential recommendation methods focus on modeling the temporal relationships of user behaviors and are good at using additional item information to improve performance. However, these methods rarely consider the influences of users' sequential subjective sentiments on their behaviors---and sometimes the temporal changes in human sentiment patterns plays a decisive role in users' final preferences. To investigate the influence of temporal sentiments on user preferences, we propose generating preferences by guiding user behavior through sequential sentiments. Specifically, we design a dual-channel fusion mechanism. The main channel consists of sentiment-guided attention to match and guide sequential user behavior, and the secondary channel consists of sparse sentiment attention to assist in preference generation. In the experiments, we demonstrate the effectiveness of these two sentiment modeling mechanisms through ablation studies. Our approach outperforms current state-of-the-art sequential recommendation methods that incorporate sentiment factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.