Abstract
Sentiment/tone describes the way issues or specific actors are described in coverage. Many analyses differentiate between negative, neutral/balanced or positive sentiment/tone as broader categories, but analyses might also measure expressions of incivility, fear, or happiness, for example, as more granular types of sentiment/tone. Analyses can detect sentiment/tone in full texts (e.g., general sentiment in financial news) or concerning specific issues (e.g., specific sentiment towards the stock market in financial news or a specific actor). The datasets referred to in the table are described in the following paragraph: Puschmann (2019) uses four data sets to demonstrate how sentiment/tone may be analyzed by the computer. Using Sherlock Holmes stories (18th century, N = 12), tweets (2016, N = 18,826), Swiss newspaper articles (2007-2012, N = 21,280), and debate transcripts (2013-2017, N = 205,584), he illustrates how dictionaries may be applied for such a task. Rauh (2019) uses three data sets to validate his organic German language dictionary for sentiment/tone. His data consists of sentences from German parliament speeches (1991-2013, N = 1,500), German-language quasi-sentences from German, Austrian and Swiss party manifestos (1998-2013, N = 14,008) and newspaper, journal and news wire articles (2011-2012, N = 4,038). Silge and Robinson (2020) use six Jane Austen novels to demonstrate how dictionaries may be used for sentiment analysis. Van Atteveldt and Welbers (2020) use state of the Union speeches (1789-2017, N = 58) for the same purpose. The same authors (van Atteveldt & Welbers, 2019) show based on a dataset of N = 2,000 movie reviews how supervised machine learning might also do the trick. In their Quanteda tutorials, Watanabe and Müller (2019) demonstrate the use of dictionaries and supervised machine learning for sentiment analysis on UK newspaper articles (2012-2016, N = 6,000) as well as the same set of movie reviews (n = 2,000). Lastly, Wiedemann and Niekler (2017) use state of the Union speeches (1790-2017, N = 233) to demonstrate how sentiment/tone can be coded automatically via a dictionary approach. Field of application/theoretical foundation: Related to theories of “Framing” and “Bias” in coverage, many analyses are concerned with the way the news evaluates and interprets specific issues and actors. References/combination with other methods of data collection: Manual coding is needed for many automated analyses, including the ones concerned with sentiment. Studies for example use manual content analysis to develop dictionaries, to create training sets on which algorithms used for automated classification are trained, or to validate the results of automated analyses (Song et al., 2020). Table 1. Measurement of “Sentiment/Tone” using automated content analysis. Author(s) Sample Procedure Formal validity check with manual coding as benchmark* Code Puschmann (2019) (a) Sherlock Holmes stories (b) Tweets (c) Swiss newspaper articles (d) German Parliament transcripts Dictionary approach Not reported http://inhaltsanalyse-mit-r.de/sentiment.html Rauh (2018) (a) Bundestag speeches (b) Quasi-sentences from German, Austrian and Swiss party manifestos (c) Newspapers, journals, agency reports Dictionary approach Reported https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BKBXWD Silge & Robinson (2020) Books by Jane Austen Dictionary approach Not reported https://www.tidytextmining.com/sentiment.html van Atteveldt & Welbers (2020) State of the Union speeches Dictionary approach Reported https://github.com/ccs-amsterdam/r-course-material/blob/master/tutorials/sentiment_analysis.md van Atteveldt & Welbers (2019) Movie reviews Supervised Machine Learning Approach Reported https://github.com/ccs-amsterdam/r-course-material/blob/master/tutorials/r_text_ml.md Watanabe & Müller (2019) Newspaper articles Dictionary approach Not reported https://tutorials.quanteda.io/advanced-operations/targeted-dictionary-analysis/ Watanabe & Müller (2019) Movie reviews Supervised Machine Learning Approach Reported https://tutorials.quanteda.io/machine-learning/nb/ Wiedemann & Niekler (2017) State of the Union speeches Dictionary approach Not reported https://tm4ss.github.io/docs/Tutorial_3_Frequency.html *Please note that many of the sources listed here are tutorials on how to conducted automated analyses – and therefore not focused on the validation of results. Readers should simply read this column as an indication in terms of which sources they can refer to if they are interested in the validation of results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.