Abstract

PurposeSentiment lexicon is an essential resource for sentiment analysis of user reviews. By far, there is still a lack of domain sentiment lexicon with large scale and high accuracy for Chinese book reviews. This paper aims to construct a large-scale sentiment lexicon based on the ultrashort reviews of Chinese books.Design/methodology/approachFirst, large-scale ultrashort reviews of Chinese books, whose length is no more than six Chinese characters, are collected and preprocessed as candidate sentiment words. Second, non-sentiment words are filtered out through certain rules, such as part of speech rules, context rules, feature word rules and user behaviour rules. Third, the relative frequency is used to select and judge the polarity of sentiment words. Finally, the performance of the sentiment lexicon is evaluated through experiments.FindingsThis paper proposes a method of sentiment lexicon construction based on ultrashort reviews and successfully builds one for Chinese books with nearly 40,000 words based on the Douban book.Originality/valueCompared with the idea of constructing a sentiment lexicon based on a small number of reviews, the proposed method can give full play to the advantages of data scale to build a corpus. Moreover, different from the computer segmentation method, this method helps to avoid the problems caused by immature segmentation technology and an imperfect N-gram language model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.