Abstract

How does sentiment flow through hyperlink networks? Earlier work on hyperlink networks has focused on the structure of the network, often modeling posts as nodes in a directed graph in which edges represent hyperlinks. At the same time, sentiment analysis has largely focused on classifying texts in isolation. Here we analyze a large hyperlinked network of mass media and weblog posts to determine how sentiment features of a post affect the sentiment of connected posts and the structure of the network itself. We explore the phenomena of sentiment flow through experiments on a graph containing nearly 8 million nodes and 15 million edges. Our analysis indicates that (1) nodes are strongly influenced by their immediate neighbors, (2) deep cascades lead complex but predictable lives, (3) shallow cascades tend to be objective, and (4) sentiment becomes more polarized as depth increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.