Abstract
Sentiment analysis is a computational study of opinion from various opinions, which is part of the work that conducts a review related to the computational treatment of opinions, sentiments, and perceptions of the text. To solve various problems in sentiment analysis, needed a good text representation method. In this study, a deep learning analysis was carried out using the Recurrent Neural Network (RNN) method and the Word2Vec Model as word embedding in sentiment classification. The sentiment dataset used comes from user reviews on Twitter (tweets) on the health protocols implemented by the public from the government's appeal. The results showed that the RNN model using sigmoid activation resulted in the greatest accuracy of 66%. The training process in this test uses 10 epochs and 32 batch sizes so that the precision value for negative sentiment is 54% and for positive sentiment is 67%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.