Abstract
The huge resources need effectiveness and efficiency, it can be processed by machine learning. There have been many studies conducted using machine learning method and produced quite good performance in sentiment analysis. Some machine learning methods that are often used in general are Naive bayes (NB), K-nearest neighbor (KNN), Support vector machine (SVM), and Random forest methods. Mostly, KNN did not achieve better performance than other machine learning methods in sentiment analysis. In this study, the Polarity v2.0 from Cornell movie review dataset will be used to test KNN with Information gain features selection in order to achieve good performance. The purpose of this research are to find the optimum K for KNN and compare KNN with other methods. KNN with the help of Information gain feature selection becomes the best performance method with 96.8% accuracy compared to the NB, SVM, and Random forest while the optimum K is 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.