Abstract
The internet makes it easier for people to connect to each other and has become a platform to express ideas and share information with the world. The growth of the internet has indirectly led to the development of social networking sites. The reviews posted by people on these sites implies their opinion, and analysis over reviews is required to understand their intent. In this paper, natural language processing technique and machine learning algorithms are applied to classify the text data. The contributions of the proposed approach are three-fold: 1) chi square selector is applied to select the k-best features, 2) support vector machines is executed to classify the reviews (hyperparameters of the SVM classifier are tuned using GridSearch approach), and 3) bagging algorithm is applied with the base classifier over the newly built SVM classifier. The number of base classifiers of the bagging algorithm is varied accordingly. The results of the proposed approach are compared to the similar existing work, and hence, it is found to achieve better results as compared to the existing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Technology and Web Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.