Abstract
Sentiment analysis on the MyPertamina application can serve as a means to extract customer opinions about the application. This method involves collecting reviews from users who have utilized the MyPertamina application and classifying these reviews as positive or negative using sentiment analysis algorithms. After the reviews are classified, themes discussed in positive and negative reviews can be extracted, such as ease of use, payment speed, or technical issues. This provides a general overview of user expectations for the MyPertamina application and areas that may need improvement. Sentiment analysis of MyPertamina application comments using Naïve Bayes (NB) and Support Vector Machine (SVM) methods is a process to evaluate whether user comments on the MyPertamina application are positive or negative. NB and SVM are machine learning methods used to predict the category of an input based on given training data. In this study, user comments on the MyPertamina application are used as input and classified as positive, negative, or neutral based on previous training data. The goal of this sentiment analysis is to understand user perceptions of the MyPertamina application and enhance its quality. The research concludes that the implementation of data mining can assist in categorizing sentiments of MyPertamina reviews. The NB algorithm with the addition of Particle Swarm Optimization (PSO) proves to be the most effective method in this study compared to NB alone, SVM, and SVM + PSO. The NB algorithm with PSO optimization yields an accuracy of 79.49%, the highest precision of 79.57%, recall of 79.38%, and the highest AUC of 95.30%, falling into the category of excellent classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Informatics and Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.