Abstract

Twitter is a popular micro-blogging social media platform. For the 2016 US Presidential election, many people expressed their likes or dislikes for a particular presidential candidate. Our work's aim was to calculate the sentiment expressed by these tweets, and then compare this sentiment with polling data to see how much correlation they share. We used a lexicon and Naive Bayes Machine Learning Algorithm to calculate the sentiment of political tweets collected one-hundred days before the election. We used manually labeled tweets as well as automatically labeled tweets based on hashtag content/topic. Our results suggest that Twitter is becoming a more reliable platform in comparison to previous work. By focusing on tweets 43 days before the election (beginning with the first presidential debate), we found a correlation as high as 94% to polling data using a moving average smoothing technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.