Abstract

It is crucial to analyze opinions about the significant shift in education systems around the world, because of the widespread use of e-learning, to gain insight into the state of education today. A particular focus should be placed on the feedback from students regarding the profound changes they experience when using e-learning. In this paper, we propose a model that combines fuzzy logic with bidirectional long short-term memory (BiLSTM) for the sentiment analysis of students’ textual feedback on e-learning. We obtained this feedback from students’ tweets expressing their opinions about e-learning. There were some ambiguous characteristics in terms of the writing style and language used in the collected feedback. It was written informally and not in adherence to standardized Arabic language writing rules by using the Saudi dialects. The proposed model benefits from the capabilities of the deep neural network BiLSTM to learn and also from the ability of fuzzy logic to handle uncertainties. The proposed models were evaluated using the appropriate evaluation metrics: accuracy, F1-score, precision, and recall. The results showed the effectiveness of our proposed model and that it worked well for analyzing opinions obtained from Arabic texts written in Saudi dialects. The proposed model outperformed the compared models by obtaining an accuracy of 86% and an F1-score of 85%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.