Abstract

Public transportation services in Indonesia, especially Jabodetabek, have used social media, especially Twitter, as a way to improve services. Currently, the use of online transportation services is like a need; it is necessary to conduct a sentiment analysis of online transportation to find out how people respond to these online transportation services. This research was made to analyze community responses with data analysis in the form of tweets that filtered with a public transportation-related keyword then classified into positive and negative classes using the Naïve Bayes Classifier method. Based on the system built, the total sentiment results for the percentage of the occurrence of positive words were 0.507843137, and the sentiment results for the percentage of negative word occurrences were 1.4132493. The results show that the level of negative sentiment from public tweets is greater than the level of positive sentiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.