Abstract
Sentiment analysis is a field of research that has a significant impact on today’s nations, politics and businesses. It is an algorithmic process to comprehend the opinions of a given subject based on the Natural Language Processing (NLP) methodologies. It has received much attention in recent years and is proven vital in various fields, e.g., online product reviews and social media analysis (Twitter, Facebook, etc.). This paper reports the outcome of sentiment analysis to investigate people’s acceptance of Pakatan Harapan, as the new Malaysian government, spearheaded by Tun Dr. Mahathir Mohamad and Dr. Wan Azizah, with an influence of Dato Seri Anwar Ibrahim. The objective is to classify tweets into three types of sentiments; positive, neutral and negative using Naïve Bayes method which is readily available in Python. The first step is tweets extraction for a month (March to April 2019) using search queries: {Pakatan Harapan, Mahathir, Anwar Ibrahim, Wan Azizah}. It is followed by tweets wrangling using NLP library and lastly output visualization in the form of a word cloud. A word cloud is a visual representation of text data with various font sizes depending on its probabilities. Final results showed that the tweets related to new government consist of neutral sentiment (41%) followed by positive sentiment (30%) and negative sentiment (29%). Malaysians do prefer the new government. However careful mitigation steps must be crafted to overcome controversial issues such as the ‘Rome Statute’ to avoid negative digital footprint, hence winning the Malaysians’ heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Universiti Malaysia Terengganu Journal of Undergraduate Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.