Abstract
In today’s digital era, Twitter’s data has been the focus point among researchers as it provides specific data and in a wide variety of fields. Furthermore, Twitter’s daily usage has surged throughout the coronavirus disease (Covid-19) period, presenting a unique opportunity to analyze the content and sentiment of covid-19 tweets. In this paper, a new approach is proposed for the automatic sentiment classification of Covid-19 tweets using the Adaptive Neuro-Fuzzy Inference System (ANFIS) models. The entire process includes data collection, pre-processing, word embedding, sentiment analysis, and classification. Many experiments were accomplished to prove the validity and efficiency of the approach using datasets Covid-19 tweets and it accomplished the data reduction process to achieve considerable size reduction with the preservation of significant dataset's attributes. Our experimental results indicate that fuzzy deep learning achieves the best accuracy (i.e. 0.916) with word embeddings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Software Science and Computational Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.