Abstract
The aim of the study was to show that sentiment analysis can improve the quality of stock price prediction on the stock exchange. In the study conducted the author proposes an experiment procedure, which, with the use of sentiment analysis, allows to recognize that the introduction of the sentiment indicator increases the predictive value of a model which uses machine learning mechanism.The aim of the study was achieved by comparing the quality of the confusion matrix for the model in which the indicator resulting from the sentiment analysis was used with the model without this indicator. Therefore, it must be concluded that sentiment analysis can be really useful in the analysis of stock market data, be it in terms of short-term investments (so-called stock market speculation), or in terms of determining the moment of taking an investment position in a longer period of time. According to the author, his approach can be applied to stock data from various markets, assuming having text data with different people’s entries about the listed companies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.