Abstract
Football as an attractive sport generates huge volumes of tweets concerning fans' opinions, feelings, and judgments during prime events. Such data can be leveraged in sentiment analysis, an algorithmic approach to analyzing text in tweets by extracting emotional tones. This paper presents a novel benchmark dataset of 132,115 tweets collected during the 2022 world cup on 𝕏 (formerly Twitter) for football-related sentiment classification. We also performed sentiment analysis on the dataset using lexicon-based tools, traditional machine learning algorithms, and pre-trained models, robustly optimized bidirectional encoder representations from transformers (BERT)- pretraining approach RoBERTa and distilled version of BERT (DistilBERT) to understand the emotions and reactions of football fans during different phases of the football matches. Results from the study indicate that most tweets had neutral sentiments in both context-aware and context-free analysis. We also describe our novel GhaFootBERT, a sentiment classification model based on transfer learning on BERT, which provides an effective approach to sentiment classification of football-related tweets. Our model performs robustly, outperforming the traditional models with 92% accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.