Abstract
Customer satisfaction is one of the factors that can be used to measure the success of service in a company. In the era of the 2000s until now, internet service providers have continued to grow throughout the world, including in Indonesia. IndiHome and First Media are companies that provide internet services that make it easy for the public to communicate and obtain information. With many uses of IndiHome and First Media internet services, there are often several obstacles that cause various responses from users. Users usually channel these responses to IndiHome or First Media customer care on Twitter. The dataset for this study was obtained from Twitter using the Twitter API and the Tweepy library. The dataset that has been collected is 6.962 tweets for the IndiHome dataset and 8,089 tweets for the First Media dataset. This study conducts sentiment analysis using the Ensemble Stacking with three base classifiers and a meta classifier. The base classifier used is Naïve Bayes, K-Nearest Neighbor, and Decision Tree, while the meta classifier used is Logistic Regression. This study uses the term frequency-inverse document frequency (TF-IDF) to determine the frequency value of a word in a document. This study uses two test scenarios: testing without oversampling and testing with oversampling on the dataset. The results show that Ensemble Stacking with term frequency-inverse document frequency feature extraction produces the highest accuracy, with an accuracy value of 88.27% on the IndiHome dataset and 92.56% on the First Media dataset by oversampling on both datasets.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Building of Informatics, Technology and Science (BITS)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.