Abstract
In a world in which millions of people express their feelings and opinions about any issue in blogs, wikis, fora, chats and social networks, the distillation of knowledge from this huge amount of unstructured information is a challenging task. In this work we build a knowledge base which merges common sense and affective knowledge and visualize it in a multi-dimensional vector space, which we call SenticSpace. In particular we blend ConceptNet and WordNet-Affect and use dimensionality reduction on the resulting knowledge base to build a 24-dimensional vector space in which different vectors represent different ways of making binary distinctions among concepts and sentiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.