Abstract
SenticNet is a publicly available semantic and affective resource for concept-level sentiment analysis. Rather than using graph-mining and dimensionality-reduction techniques, SenticNet 3 makes use of "energy flows" to connect various parts of extended common and common-sense knowledge representations to one another. SenticNet 3 models nuanced semantics and sentics (that is, the conceptual and affective information associated with multi-word natural language expressions), representing information with a symbolic opacity of an intermediate nature between that of neural networks and typical symbolic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.