Abstract
BackgroundThe practice of evidence-based medicine (EBM) requires clinicians to integrate their expertise with the latest scientific research. But this is becoming increasingly difficult with the growing numbers of published articles. There is a clear need for better tools to improve clinician's ability to search the primary literature. Randomized clinical trials (RCTs) are the most reliable source of evidence documenting the efficacy of treatment options. This paper describes the retrieval of key sentences from abstracts of RCTs as a step towards helping users find relevant facts about the experimental design of clinical studies.MethodUsing Conditional Random Fields (CRFs), a popular and successful method for natural language processing problems, sentences referring to Intervention, Participants and Outcome Measures are automatically categorized. This is done by extending a previous approach for labeling sentences in an abstract for general categories associated with scientific argumentation or rhetorical roles: Aim, Method, Results and Conclusion. Methods are tested on several corpora of RCT abstracts. First structured abstracts with headings specifically indicating Intervention, Participant and Outcome Measures are used. Also a manually annotated corpus of structured and unstructured abstracts is prepared for testing a classifier that identifies sentences belonging to each category.ResultsUsing CRFs, sentences can be labeled for the four rhetorical roles with F-scores from 0.93–0.98. This outperforms the use of Support Vector Machines. Furthermore, sentences can be automatically labeled for Intervention, Participant and Outcome Measures, in unstructured and structured abstracts where the section headings do not specifically indicate these three topics. F-scores of up to 0.83 and 0.84 are obtained for Intervention and Outcome Measure sentences.ConclusionResults indicate that some of the methodological elements of RCTs are identifiable at the sentence level in both structured and unstructured abstract reports. This is promising in that sentences labeled automatically could potentially form concise summaries, assist in information retrieval and finer-grained extraction.
Highlights
The practice of evidence-based medicine (EBM) requires clinicians to integrate their expertise with the latest scientific research
Using Conditional Random Fields (CRFs), sentences can be labeled for the four rhetorical roles with F-scores from 0.93–0.98
This outperforms the use of Support Vector Machines
Summary
The practice of evidence-based medicine (EBM) requires clinicians to integrate their expertise with the latest scientific research. The practice of evidence-based medicine (EBM) [1,2] asks clinicians to integrate clinical expertise with the best available external clinical evidence derived from scientific research, when making decisions about the care of individual patients. To aid clinicians access the best evidence, various manual efforts exist for summarizing findings derived from RCTs [8,9,10,11], and for encoding RCT protocols and outcomes into structured knowledge bases [12]. These are labor intensive efforts for systematic reviewers, and can benefit from better search engine design, and improved indexing
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.