Abstract

During tool-mediated interaction with everyday objects, we experience kinesthetic forces and tactile sensations in the form of vibration and skin deformation at the fingerpad. Fingerpad skin deformation is caused by forces applied tangentially and normally to the fingerpad skin, resulting in tangential and normal skin displacement. We designed a device to convey 3-degree-of-freedom (DoF) force information to the user via skin deformation, and conducted two experiments to determine the devices effectiveness for force-feedback substitution and augmentation. For sensory substitution, participants used 1-DoF and 3-DoF skin deformation feedback to locate a feature in a 3-DoF virtual environment. Participants showed improved precision and shorter completion time when using 3-DoF compared to 1-DoF skin deformation feedback. For sensory augmentation, participants traced a path in space from an initial to a target location, while under guidance from force and/or skin deformation feedback. When force feedback was augmented with skin deformation, participants reduced their path-following error over the cases when force or skin deformation feedback are used separately. We conclude that 3-DoF skin deformation feedback is effective in substituting or augmenting force feedback. Such substitution or augmentation could be used when force feedback is unattainable or attenuated due to device limitations or system instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.