Abstract

Neural synchronization has been engaged in several brain mechanisms. Previous studies have shown that the interaction between the time of spiking activity and phase of local field potentials (LFPs) plays a key role in many cognitive functions. However, the potential role of this spike-LFP phase coupling (SPC) in neural coding is not fully understood. Here, we sought to investigate the role of this SPC for encoding the sensory properties of visual stimuli. To this end, we measured SPC strength in the preferred and anti-preferred motion directions of stimulus presented inside the receptive field of middle temporal (MT) neurons. We found a selective response in terms of SPC strength for different directions of motion. Remarkably, this selective function is inverted with respect to the spiking activity. In other words, the least SPC occurs for the preferred direction (based on the spike rate), and vice versa; the strongest SPC is induced in the anti-preferred direction. Altogether, these findings imply that the neural system may use spike-LFP phase coupling in the primate visual cortex to encode sensory information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.