Abstract
Used ventilation filters are a major source of sensory pollutants in air handling systems. The objective of the present study was to evaluate the net effect that different combinations of filters had on perceived air quality after 5 months of continuous filtration of outdoor suburban air. A panel of 32 subjects assessed different sets of used filters and identical sets consisting of new filters. Additionally, filter weights and pressure drops were measured at the beginning and end of the operation period. The filter sets included single EU5 and EU7 fiberglass filters, an EU7 filter protected by an upstream pre-filter (changed monthly), an EU7 filter protected by an upstream activated carbon (AC) filter, and EU7 filters with an AC filter either downstream or both upstream and downstream. In addition, two types of stand-alone combination filters were evaluated: a bag-type fiberglass filter that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC. Furthermore, its pressure drop changed very little during the 5 months of service, and it had the added benefit of removing a large fraction of ozone from the airstream. If similar results are obtained over a wider variety of soiling conditions, such filters may be a viable solution to a long recognized problem. The present study was designed to address the emission of sensory offending pollutants from loaded ventilation filters. The goal was to find a low-polluting solution from commercially available products. The results indicate that the use of activated carbon (AC) filters downstream of fiberglass bag filters can reduce the degradation of air quality that occurs with increasing particle loading. A more practical solution, yet comparably effective, is a stand-alone particle filter that incorporates AC. In either case, further testing under a variety of conditions is recommended before making design decisions regarding the type of filters best suited to efficient building operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.