Abstract

Recent studies have brought to light the necessity to discern sex-specific differences in various pain states and different cell-types that mediate these differences. These studies have uncovered the role of neuroimmune interactions to mediate pain states in a sex-specific fashion. While investigating immune function in pain development, we discovered that females utilize immune components of sensory neurons to mediate neuropathic pain development. We utilized two novel transgenic mouse models that eitherrestore expression of toll-like receptor (TLR) 4 inNav1.8 nociceptors on a TLR4-null background (TLR4LoxTB) or remove TLR4 specifically from Nav1.8 nociceptors (TLR4fl/fl). After spared nerve injury (SNI), a model of neuropathic injury, we observed a robust female-specific onset of mechanical hypersensitivity in our transgenic animals. Female Nav1.8-TLR4fl/fl knockout animals were less mechanically sensitive than cre-negative TLR4fl/fl littermates. Conversely, female Nav1.8-TLR4LoxTB reactivated animals were as mechanically sensitive as their wild-type counterparts. These sex and cell-specific effects were not recapitulated in male animals of either strain. Additionally, we find the danger associated molecular pattern, high mobility group box-1 (HGMB1), a potent TLR4 agonist, localization and ATF3 expression in females is dependent on TLR4 expression in dorsal root ganglia (DRG) populations following SNI. These experiments provide novel evidence toward sensory neuron specific modulation of pain in a sex-dependent manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.