Abstract

This study investigated the involvement of sensory nerves and, in particular, neuronal transient receptor potential vanilloid (TRPV) 1 channels, in the CO2-mediated regulation of cerebrovascular tone. Basilar artery diameter and blood flow velocity in the ventral midbrain were determined in a rat cranial window preparation by digital imaging and laser-Doppler flowmetry, respectively. Superfusion of the basilar artery with capsaicin, a selective TRPV1 receptor agonist, caused a transient relaxation, consistent with acute desensitization of neuronal TRPV1 channels. Constriction to respiratory hypocapnia remained unaffected following capsaicin superfusion. Denervation of sensory nerves by repeated capsaicin injection of neonates also did not reduce the respiratory hypocapnia constriction of the basilar artery as well as the decreased flow velocity in the ventral midbrain in adults. These findings suggest that sensory nerves and, in particular, neuronal TRPV1 channels, do not play a role in respiratory hypocapnia constriction and decreased flow, at least in rat basilar artery and ventral midbrain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.