Abstract

A decrease in respiratory rate in mice during exposure to irritating airborne chemicals has been utilized as a response parameter to characterize the degree of upper respiratory tract irritation (sensory irritation) to the thermal decomposition products of various polymers. These included polystyrene, polyvinyl chloride, flexible polyurethane foam, polytetrafluorethylene, a fiber glass reinforced polyester resin, and Douglas Fir. Each of the materials was thermally decomposed in a low-mass vertical furnace in an air atmosphere at a programmed heating rate of 20 degrees C/min. Mice, in groups of four, were exposed to graded concentrations of the thermal decomposition products of each of the above materials. Dose-response curves were obtained by utilizing the maximum percent decrease in respiratory rate as the response parameter during each exposure. Comparison of these dose-response curves with other sensory irritants such as chlorine, ammonia, hydrogen chloride, sulfur dioxide, and toluene diisocyanate gave an indication of the sensory irrtation potential of the thermal decomposition products of these various polymers versus that of well-known single airborne chemical irritants. Total stress and incapacitation of the organism during exposure to sensory irritants such as from the thermal decomposition products of synthetic polymers is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.