Abstract

Sensory feedback in upper limb amputees is crucial for improving movement decoding and also to enhance embodiment of the prosthetic limb. Recently, an increasing number of invasive and noninvasive solutions for sensory stimulation have demonstrated the capability of providing a range of sensations to upper limb amputees. However, the cortical impact of restored sensation is not clearly understood. Particularly, understanding the cortical connectivity changes at multiple scales (nodal and modular) in response to sensory stimulation, can reveal crucial information on how amputees brain process the sensory stimuli. Using Electroencephalography (EEG) signals, we compared the cortical connectivity network in response to sensory feedback provided by targeted transcutaneous electrical nerve stimulation (tTENS) in an upper limb amputee during phantom upper limb movements. We focused our cortical connectivity analysis on four functional modules comprising of 20 brain regions that are primarily associated with a visually guided motor task (visual, motor, somatosensory and multisensory integration (MI)) used in this study. At the modular level, we observed that the hubness (a graph theoretic measure quantifying the importance of brain regions in integrating brain function) of the motor module decreases whereas that of the somatosensory module increases in presence of tTENS feedback. At the nodal level, similar observations were made for the visual and MI regions. This is the first work to reveal the impact of sensory feedback at multiple scales in the cortex of amputees in response to sensory stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.