Abstract
Sensory electrical stimulation (SES)-i.e., low-intensity electrical currents below, at, or just above the sensory threshold but below the motor threshold-is mainly used to restore/improve postural balance in pathological and healthy subjects. However, the ins and outs of its application as well as the neurophysiological effects induced are not yet well known. Hence, the aim of this paper was to address the effects of SES on postural balance based on these considerations. The immediate/concurrent effects (SES applied during postural balance measurements), the acute effects (SES durably applied before measuring postural balance) and the chronic effects (SES included in training/rehabilitation programs, i.e., measurements performed before and after the programs) were analysed with a comprehensive review. SES can lead to the improvement of postural balance using any of the three applications (immediate/concurrent, acute and chronic), notably in pathological subjects. The beneficial effects of SES can take place at the peripheral (sensory receptors sensitivity), spinal (spinal motoneural excitablity) and supra-spinal (cortex reorganisation or adaptation) levels. In healthy subjects, SES appears interesting, but too few studies have been conducted with this population to report clear results. Moreover, the literature is relatively devoid of comparative studies about the characteristics of the stimulation current (e.g., location, current parameters, duration). In practice, SES appears to be particularly useful to reinforce or restore the postural function in the immediate/concurrent, acute or chronic application in pathlogical populations while its effects should be confirmed in healthy sujects by future studies. Moreover, future research should focus on the different characteristics of stimulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.