Abstract

The effect of sensory deprivation on anatomical and physiological properties in two genetically defined types of layer 6 corticothalamic pyramidal cells in mouse somatosensory barrel cortex was investigated using in vitro electrophysiology. The two types analysed were the L6-Ntsr1 subtype, found preferentially in the upper region of layer 6 and projecting to both ventral posterior medial nucleus of the thalamus and posterior medial nucleus of the thalamus, and the L6-Drd1a subtype, located mostly in the lower regions of layer 6 and projecting to posterior medial nucleus. We found that the apical dendrite in L6-Ntsr1 cells is longer and more branched, compared with L6-Drd1a cells, and that the increase in firing frequency with increasing current stimulation is steeper in L6-Drd1a cells. Sensory deprivation was achieved clipping one row of whiskers from birth until the day of experiment (16 ± 2days). Mice of this age are actively exploring. In L6-Ntsr1, but not in L6-Drd1a cells, sensory deprivation decreased apical and basal dendrite outgrowth, and calcium influx evoked by backpropagating action potentials. These results contribute to the ongoing functional characterisation of corticothalamic layer 6 cells and indicate differences in the postnatal cortical refinement of two distinct corticothalamic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.