Abstract

Intracellular recordings were made from the P fibre, the smallest of the three afferent neurones innervating the thoracic-coxal muscle receptor organ of the crab (Carcinus maenas). While the two larger afferents are nonspiking, the response of the P fibre to a trapezoidal change in receptor muscle length consists of a single action potential signalling the onset of stretch superimposed on a graded amplitude receptor potential. The P fibre is sensitive to the velocity of the applied stretch, but is insensitive to static joint position, stretch amplitude and the velocity of the release phase. The presence and amplitude of the action potential depends on the initial length of the receptor muscle, the tension caused by efferent activation of the receptor muscle prior to receptor stretch, and on the velocity of stretch. Length constant (1.9 mm) and specific membrane resistance (76 K omega x cm2) values obtained for the P fibre, together with its small diameter (7 microns) suggest that this neurone is less well adapted to conveying passive signals to the thoracic ganglion than are the S and T fibres. It is likely that the P fibre complements the length sensitivity of the S fibre and the tension and velocity sensitivity of the T fibre by signalling the onset of receptor stretch via single action potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call