Abstract
Even though peripheral nerves regenerate well, axons are often misrouted and reinnervate inappropriate distal pathways post-injury. Misrouting most likely occurs at branch points where regenerating axons make choices. Here, we show that the accuracy of sensory axon reinnervation is enhanced by overexpression of the guidance molecule nerve growth factor (NGF) distal to the bifurcation. We used the femoral nerve as a model, which contains both sensory and motor axons that intermingle in the parent trunk and distally segregate into the saphenous (SB) and motor branches (MB). Transection of the parent trunk resulted in misrouting of axon reinnervation to SB and MB. To enhance sensory axon targeting, recombinant adenovirus encoding NGF was injected along the SB close to the bifurcation 1 week post-injury. The accuracy of axon reinnervation was assessed by retrograde tracing at 3 or 8 weeks after nerve injury. NGF overexpression significantly increased the accuracy of SB axon reinnervation to the appropriate nerve branch, in a manner independent of enhancing axon regeneration. This novel finding provides in vivo evidence that gradient expression of neurotrophin can be used to enhance targeting of distal peripheral pathways to increase axon regeneration into the appropriate nerve branch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.