Abstract

The properties of planar sensors based on tin dioxide and indium oxide used for the determination of acetone vapors have been studied. Sensors based on synthesized SnO2 and In2O3 nanopowders showed high sensitivity to low concentrations of acetone in a humid environment which simulates human exhalation. The addition of a small amount of AuIII ions to hydroxide sols significantly increases the threshold sensitivity and the sensor response in a wide range of acetone concentrations. In2O3-Au sensors have the maximum sensitivity at an operating temperature of 325 °C. The In2O3-Au-sensors reliably record the change in acetone concentration in the concentration range from a minimum of 0.1 to 5 ppm with high accuracy, which is necessary for rapid diagnostics of the condition of patients with diabetes (1.8-5.0 ppm). The high sensitivity of the obtained sensors is explained by the structural features and the surface conditions of oxides and gold nanoparticles, which depend on the sample synthesis conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.