Abstract

A sensorless speed control method for induction motors in a fuel cell vehicle is presented. An artificial neural network (ANN) estimates the speed, and a neuro-fuzzy controller (NFC) is used in the speed control loop to overcome the nonlinearity of the plant. A PI controller controls the motor flux and the NFC determines the required torque. The tuning of the NFC is simple and this is one of the advantages of NFCs compared with the conventional PI controllers. In addition, the nonlinear behavior of the NFC increases its robustness against variation of parameters in the plant. The speed estimation is done by a two-layer online neural network in the rotating coordinate fixed with rotor flux. The ANN estimator has a simple structure, and its parameters are adjusted online. The simulation and experimental results are given to prove the effectiveness of this approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call