Abstract

This article reviews six fundamental-wave excitation sensorless techniques for synchronous machines reported in the literature. All the techniques rely on a hybrid flux observer scheme, combining the voltage and current-models of the machine, and use the flux observer error signal to track the rotor phase angle and the rotational speed. A common mathematical framework with magnetic nonlinearity is constructed for the stability analysis where each of the studied technique is represented by a unique projection vector. The dynamics of the flux and the position observer is investigated and the regions of instability are identified for each scheme under similar operating conditions. Experimental validation to support the stability analysis is reported on a 1.1-kW synchronous reluctance machine test-bench.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.