Abstract

To control PM brushless DC motors, position and speed sensors are indispensable because the current should be controlled depending on the rotor position. However, these sensors are undesirable from standpoints of size, cost, maintenance, and reliability. There are different ways of approaching this problem, depending on the flux distribution. The paper presents the speed and position sensorless control of PM brushless DC motors with a sinusoidal flux distribution. Two approaches are presented and compared with each other; one is based on the voltage model of the motor and another is based on the current model. The starting procedure is also a very difficult problem under sensorless drives, because the sensorless drive algorithm uses voltage and current for estimation of rotor position, but no information is available before starting. A novel starting method is presented by using a salient-pole machine. Experimental results based on DSP-TMS320C25 controller are shown for comparisons, which demonstrate desired characteristics both in steady-state and starting conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call