Abstract
SUMMARYThis paper addresses the problem of state estimation in induction motors. Generally, the motor observer design has been dealt based on standard models neglecting the saturation effect in the magnetic characteristic. As a matter of fact, magnetic saturation cannot be ignored especially when considering control strategies (speed and torque) that involve large flux variations. Such large flux variations are necessary to meet optimal operation conditions in the presence of wide range load torque changes. On the other hand, it is well known that use of mechanical (speed and torque) sensors entails reliability issues. In this paper, a new sensorless adaptive observer is designed for induction machine based on a model that accounts for the nonlinear feature in the magnetic circuit. The observer consists of two interconnected state‐dependent gain observers and is formally shown to provide accurate estimates of the mechanical and magnetic variables using only stator current and voltage measurements. Copyright © 2013 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Adaptive Control and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.