Abstract

Early detection and diagnosis of incipient faults is desirable for online condition assessment, product quality assurance, and improved operational efficiency of induction motors. In this paper, a speed-sensorless fault diagnosis system is developed for induction motors, using recurrent dynamic neural networks and multiresolution or Fourier-based signal processing for transient or quasi-steady-state operation, respectively. In addition to nameplate information required for the initial system setup, the proposed fault diagnosis system uses only motor terminal voltages and currents. The effectiveness of the proposed diagnosis system in detecting the most widely encountered motor electrical and mechanical faults is demonstrated through extensive staged faults. The developed system is scalable to different power ratings and it has been successfully demonstrated with data from 2.2, 373 and 597 kW induction motors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.