Abstract
A position-sensorless algorithm is developed for an interior permanent-magnet synchronous motor, while reflecting the saliency in an extended electromotive force term. Active flux is converted into a new linear regression form, and a high-pass filter was applied. Then, the gradient algorithm is applied to derive an estimate of the active flux in the stationary frame. The proposed observer is an inherently sensorless type because it does not require the rotor speed or position information. It is practically attractive since it does not require the use of pure integrator that is marginally stable. In addition, the observer can be constructed without the phase modulation flux linkage constant. It is basically a model-based method. However, it is easily extended to a signal injection method that is robust in the low-speed region. Ultimate boundedness is established using the persistency of excitation condition. Validity of the algorithm is demonstrated experimentally via torque and speed control with a full load in the low-speed range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.