Abstract

When a person observes someone else performing an action, the observer's sensorimotor cortex activates as if the observer is the one performing the action, a phenomenon known as action simulation. While this process has been well-established for basic (e.g., grasping) and complex (e.g., dancing) actions, it remains unknown if the framework of action simulation is applicable to visual languages such as American Sign Language (ASL). We conducted an EEG experiment with deaf signers and hearing non-signers to compare overall sensorimotor EEG between groups, and to test whether sensorimotor systems are differentially sensitive to signs that are produced with one hand (“1H”) or two hands (“2H”). We predicted greater alpha and beta event-related desynchronization (previously correlated with action simulation) during the perception of 2H ASL signs compared to 1H ASL signs, due to greater demands on sensorimotor processing systems required for producing two-handed actions. We recorded EEG from both groups as they observed videos of ASL signs, half 1H and half 2H. Event-related spectral perturbations (ERSPs) in the alpha and beta ranges were computed for the two conditions at central electrode sites overlying the sensorimotor cortex. Sensorimotor EEG responses in both Hearing and Deaf groups were sensitive to the observed gross motor characteristics of the observed signs. We show for the first time that despite hearing non-signers showing overall more sensorimotor cortex involvement during sign observation, mirroring-related processes are in fact involved when deaf signers observe signs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.