Abstract

Sensorimotor synchronization has been used in the rehabilitation of gait, yet much remains unknown regarding the optimal use of this technique. The purpose of this study was to test the hypothesis that adding small amounts of variability to the motion of a vertically oscillating treadmill would affect the behavior of healthy walkers. Sixteen young adults walked on a treadmill and pneumatically actuated platform for one control trial (no oscillation) and eight trials in which the walking surface oscillated in the vertical direction under different conditions of variability. During the oscillation trials, the mean frequency of oscillation was equal to the preferred step frequency of the participant, but each individual cycle period was allowed to vary within a pre-determined range from 0% (no variability) to ±25% (high variability) of the mean cycle period. The amount of variance of each cycle period within each condition was drawn randomly from a white noise generator. Synchronization was improved when a small amount of noise was added to the platform motion but synchronization significantly decreased at higher levels of noise. Coefficient of variation of stride duration was relatively unchanged at lower levels of variability, but increased significantly at higher levels of variability. Statistical persistence of stride duration was significantly reduced during all trials with vertical oscillation relative to normal walking, but was not significantly altered by variability in the treadmill oscillation. These results suggest that the addition of a small amount of random variability to the cycle period of an oscillator may enhance sensorimotor synchronization of gait to an external signal. These data may have implications for the use of synchronization in a therapeutic setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.