Abstract

To optimize output streams in mechanical waste treatment plants dynamic particle size control is a promising approach. In addition to relevant actuators – such as an adjustable shredder gap width – this also requires technology for online and real-time measurements of the particle size distribution. The paper at hand presents a model in MATLAB® which extracts information about several geometric descriptors – such as diameters, lengths, areas, shape factors – from 2D images of individual particles taken by RGB cameras of pre-shredded, solid, mixed commercial waste and processes this data in a multivariate regression model using the Partial Least Squares Regression (PLSR) to predict the particle size class of each particle according to a drum screen. The investigated materials in this work are lightweight fraction, plastics, wood, paper-cardboard and residual fraction. The particle sizes are divided into classes defined by the screen cuts (in mm) 80, 60, 40, 20 and 10. The results show assignment reliability for certain materials of over 80%. Furthermore, when considering the results for determining a complete particle size distribution – for an exemplary real waste – the accuracy of the model is as good as 99% for the materials wood, 3D-plastics and residual fraction for each particle size class respectively as assignment errors partially compensate each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.