Abstract

SUMMARYThe proposed algorithm integrates in a single planner the global motion planning and local obstacle avoidance capabilities. It efficiently guides the robot in a dynamic environment. This eliminates some of the traditional problems of planned architectures (model-plan-act scheme) while obtaining many of the qualities of behavior-based architectures. The computational efficiency of the method allows the planner to operate at high-rate sensor frequencies. This avoids the need for using both a collision-avoidance algorithm and a global motion planner for navigation in a cluttered environment. The method combines map-based and sensor-based planning operations to provide a smooth and reliable motion plan. Operating on a simple grid-based world model, the method uses a fast marching technique to determine a motion plan on a Voronoi extended transform extracted from the environment model. In addition to this real-time response ability, the method produces smooth and safe robot trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.