Abstract

The objective of this document Is to show the capabilities of parallel hardware-based on-line learning neural networks (NNs). This specific application is related to an on-line estimation problem for sensor validation purposes. Neural-network-based microprocessors are starting to be commercially available. However, most of them feature a learning performed with the classic back-propagation algorithm (BPA). To overcome this lack of flexibility a customized motherboard with transputers was implemented for this investigation, The extended BPA (EBPA), a modified and more effective BPA, was used for the on-line learning, These parallel hardware-based neural architectures were used to implement a sensor failure detection, identification, and accommodation scheme in the model of a night control system assumed to be without physical redundancy in the sensory capabilities. The results of this study demonstrate the potential for these neural schemes for implementation in actual flight control systems of modern high performance aircraft, taking advantage of the characteristics of the extended back-propagation along with the parallel computation capabilities of NN customized hardware.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.