Abstract
We study the problem of sensor-scheduling for target tracking to determine which sensors to activate over time to trade off tracking performance with sensor usage costs. We approach this problem by formulating it as a partially observable Markov decision process (POMDP), and develop a Monte Carlo solution method using a combination of particle filtering for belief-state estimation and sampling based Q-value approximation for lookahead. To evaluate the effectiveness of our approach, we consider a simple sensor scheduling problem involving multiple sensors for tracking a single target.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.