Abstract

Poly(lactic acid)PLA is a biocompatible and biodegradable polyester with lactic acid being a byproduct of decomposition. PLA can be produced via processing starch, it is mechanically robust and environmentally stable and has therefore attracted interest in applications such as biomedical implants, controlled drug delivery and other kitchen variety commodity products. Making PLA electrically conductive via blending it with conducting polymers will extend its range of applications to include electronic devices and sensors. Commercial PLA has a hard grainy morphology, but is readily soluble in organic solvents and can be cast into thin films, fibers, foams or other forms. A fiber typically has a larger surface area to volume ratio compared to films and is thus technologically advantageous for sensor applications. We have successfully prepared conducting PLA/PANi nanofibers at low PLA concentrations in CHCl <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> and used it to sense alcohol vapors of increasing molecular size. The larger the size of the alcohol molecule, the longer it took for the sensor to reach saturation and the sensitivity was smaller. The sensor response times were found to be slower than the recovery times by more than two orders of magnitude for the larger alcohol molecules. Since larger molecules were not able to penetrate the fibers, they were easier to remove. The fiber sensors could be tested on various alcohols without damage and hence were reusable. Conducting PLA based nanofibers therefore present yet another means of fabricating gas sensors and that are biocompatible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.